Detecting Face Touching with Dynamic Time Warping on Smartwatches: A Preliminary Study

Number of Training Participants vs.

Classification Accuracy (User-Independent)

Yu-Peng Chen¹, Chen Bai², Adam Wolach³, Mamoun T. Mardini^{2,3}, Lisa Anthony¹

¹ Department of CISE, ² Department of Health Outcomes and Biomedical Informatics, ³ Department of Aging and Geriatric Research, University of Florida

Binary

Classification

Classification

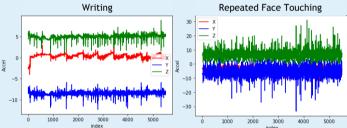
Multiclass

Motivation

- COVID-19 has been a global challenge in many ways [1].
- One of the CDC recommendations is to avoid touching eyes, nose, or mouth with unwashed hands [2].
- We explored a possible approach to help users avoid touching their face by alerting them through a smartwatch application.

Method

- Selected 10 everyday activities including 6 non-face-touching activities and 4 face-touching activities.
- Asked 10 participants to perform each activity repeatedly for 3 minutes while wearing a smartwatch.
- $DTW(A, B) = \int DTW(A_x, B_x)^2 + DTW(A_y, B_y)^2 + DTW(A_z, B_z)^2$



	index					
Group	Activity					
Non-face-touching	Using a mobile phone					
	Lying flat on the back					
	Computer tasks					
	Writing					
	Leisurely walk					
	Moving items from one location to another					
Face-touching	Repeated face touching					
	Eating and drinking					
	Simulated smoking					
	Adjusting eyeglasses					

Results

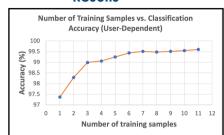


Table 1: We formulated the problem in two ways: binary classification and multiclass classification

User-

Dependent

Accuracy

99.07%

(Figure 1)

92.48%

(Table 1)

User-

Independent

Accuracy

85.13%

(Figure 2)

55.1%

Figure 1: For each activity type, a single template was selected from each training participant.

Figure 2: For each activity type, *T* (e.g., 1 to 11) samples were selected as the training data.

Predicted Class Actual Class	Mobile Phone	Lying Flat	Computer Tasks	Writing	Leisurely Walk	Moving Items	Repeated Face Touching	Eating and Drinking	Simulated Smoking	Adjusting Eyeglasses
Mobile Phone	99.09%	0.00%	0.55%	0.00%	0.00%	0.00%	0.00%	0.00%	0.36%	0.00%
Lying Flat	0.00%	98.64%	0.27%	0.00%	0.00%	0.00%	0.18%	0.00%	0.73%	0.18%
Computer Tasks	2.00%	0.00%	96.45%	1.45%	0.00%	0.09%	0.00%	0.00%	0.00%	0.00%
Writing	0.00%	0.00%	0.18%	99.82%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Leisurely Walk	0.82%	0.00%	0.00%	0.09%	94.36%	4.00%	0.64%	0.09%	0.00%	0.00%
Moving Items	0.18%	0.00%	0.45%	3.45%	0.00%	94.18%	0.00%	1.45%	0.27%	0.00%
Repeated Face Touching	0.00%	0.27%	0.00%	0.00%	0.00%	0.55%	83.91%	3.27%	3.45%	8.55%
Eating and Drinking	0.00%	0.00%	0.00%	0.09%	0.00%	1.55%	2.18%	90.91%	2.73%	2.55%
Simulated Smoking	0.45%	0.09%	0.55%	0.18%	0.00%	0.64%	2.91%	1.45%	89.09%	4.64%
Adjusting Eyeglasses	0.18%	0.55%	0.00%	0.00%	0.00%	0.09%	10.91%	3.45%	6.45%	78.36%

Table 2: Confusion matrix of individual activity recognition in the user-dependent scenario. There were more within-category confusions than between-category confusions, where category means face-touching activities versus non-face-touching activities.

Limitations and Future Work

- Participants wore the smartwatch on their dominant wrist, but people prefer wearing watches on their non-dominant hand.
- Data were only collected in a laboratory setting and gyroscope data were not collected.
- We did not compare the quantitative results of DTW and ML-based methods regarding classification accuracy and required resources.
- Our classification experiments were conducted offline. Real-time face-touching detection on smartwatches is the eventual goal.

Takeaways

- Smartwatches have the potential for detecting face touching using the DTW algorithm.
- Formulating the multiclass classification problem as a binary classification problem significantly increases the recognition accuracy.
- DTW has the potential to provide a personalized face-touching detection service on resource-constrained devices such as smartwatches.

Acknowledgments

[2] Centers for Disease Control and Prevention. 2020. Prevent Getting Sick. Retrieved March 8, 2021 from https://www.cdc.gov/coronavirus/2019-ncov/preventgetting-sick/index.html

We thank Emmie Palmer and Megan Siobhan Roberts for assisting us with running the study. This project was supported by the UF Informatics Institute (UFII) COVID-19 Response SEED Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of UFII.